Skip to content
  • Emergency
  • NAT-Wiki
  • TUMonline
  • Moodle
  • Webmail
  • Webdisk
  • e-Journals
  • App Server
  • CIP Pool
  • de
  • en
  • TUM School of Natural Sciences
  • Technical University of Munich
Technical University of Munich
  • Homepage
  • News and Events
    • Bioscience
    • Chemistry
    • Physics
    • Awards
    • ERC Grants
    • Rankings
    • TUM in figures
    • Events
      • Open house day
        • 2024
      • Day of Diversity in Physics
      • Tag der Physik
        • Tag der Physik 2024
        • Tag der Physik 2023
      • Chemistry graduation ceremony
        • Archive
          • Chemistry graduation ceremony
          • Chemistry graduation ceremony
      • Physics graduation ceremony
        • Previous graduation ceremonies in physics
          • Physics graduation ceremony (June)
          • Physics graduation ceremony 2023 (November)
          • Physics graduation ceremony 2024 (June)
          • Physics graduation ceremony 2024 (November)
          • Physics graduation ceremony 2025 (February)
      • Physik-Kolloquium
  • Professors
  • Our School
    • Contact and directions
      • In an emergency: What to do?
    • Organization
      • Executive Board
      • School Council
      • Organigram
    • School Administration
    • Professors
      • TUM Junior Fellows
    • Graduate Center
    • Equal opportunities
      • Child care
      • Study and work with family
      • Support for Ukranian students
    • IT Office
      • IT-Service 5100
      • IT-Service 5400
        • Team
        • Support
        • CIP Pool
        • Info
        • TUMcard
    • Central Services
      • Elektronik 5100
      • Elektronik 5400
        • Mitarbeiter
        • Service
        • Auftragsabwicklung
        • Projekte
          • Heizungssteuerung
          • HV-Supply
          • Ionenfalle
          • Laser Shutter
          • LabVIEW Praktikum
          • Piezopulser
          • Potentiostat
          • Spirograph
        • Lageplan
      • Feinmechanik 5100
      • Feinmechanik 5400
        • Mitarbeiter
        • Service
        • Auftragsabwicklung
        • Lageplan
      • Glasbläserei
      • Kühlmittel und Gase
      • Strahlenschutz und Arbeitssicherheit
      • Teilbibliotheken
        • Dokumenten-Dienst
          • Subito
      • Ver- und Entsorgung
      • Lecture Technology and Physics Collection
      • Scientific computing
      • Zentrales Technologielabor
        • Technologielabor
        • Digitallabor
    • Outreach
      • TUM Open Campus Day
      • studium MINT
      • Unitag an der TUM
      • Open Doors with the Mouse 2023
    • Our History
      • Chemistry
        • Inorganic Chemistry
        • Organic Chemistry
        • Physical and Theoretical Chemistry
        • Technical Chemistry
      • Physics
  • Academics
  • Research
    • Main Research Areas
      • Accelerated Scientific Discovery
      • Biomolecular Engineering & Design
      • Clean Technology Solutions
      • Fundamental Forces and Cosmic Evolution
      • Fundamental Science for Health
      • Quantum Science & Technologies
    • Professional Profiles
    • Departments
    • Clusters
    • CRCs and Transregios
    • TUM Centers
    • Core Facilities
    • Research on Campus Garching
  • Intranet
  • Sitemap
  1. Homepage
  2. News and Events

Latest News

Identifying pathogens within minutes instead of days

Fundamental Science for Health, Research, Bioscience | 06.05.2025

Mass spectrometry detects bacteria without time-consuming isolation and multiplication

Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample. Image: Dr. Robert Reich / TUM
First author Wei Chen loads the mass spectrometer with a sample. Image: Dr. Robert Reich / TUM

Speed and reliability are crucial in the diagnosis of diseases. Researchers at the Technical University of Munich (TUM) and Imperial College London have developed a new method to identify bacteria with unprecedented speed. This means that the waiting time can be reduced from several days to just a few minutes.

Traditionally, bacterial diseases are diagnosed by the tedious isolation of pathogens and the creation of bacterial cultures. Waiting times of several days are the rule here. Only then can the targeted treatment of the disease begin. The team led by Nicole Strittmatter, Professor of Analytical Chemistry at TUM, and Dr. James S. McKenzie (Imperial) uses mass spectrometry for its innovative approach. This enabled the researchers to identify specific metabolic products of bacteria directly in tissue and stool samples.

At the heart of the process is a database in which 232 medically important bacterial species and their metabolic products have been recorded to date. Biomarkers are derived from this database, which can then be used to directly detect specific bacteria. Among the bacteria that can be identified using the new method are clinically extremely important pathogens that can, for example, trigger stomach cancer, are responsible for certain pneumonias and meningitis, are associated with premature births, and can cause gonorrhea or blood poisoning.

Further expanding the bacterial database

First author Wei Chen, PhD student at the Department of Bioscience at the TUM School of Natural Sciences in Garching, emphasizes: "Our innovative approach is not to look directly for the pathogenic bacteria, but only for their metabolic products. This allows us to detect them indirectly, but much more quickly."

Prof. Nicole Strittmatter also sees great opportunities for use in personalized medicine, in which the therapy is precisely tailored to the respective patient: "This is one of the most important future topics in biotechnology and medicine. Targeted interventions can dramatically improve the chances of successful treatment. As analysts, we develop modern tools and methods for doctors to do this."

The biomarker database now needs to be further expanded to enable the regular use of the new method in clinical practice. According to the researchers, a total of over 1400 bacterial pathogens are known and described. Their specific metabolic products should now be identified and included.

 

Publication

  • Chen, W., Qiu, M., Paizs, P. et al. Universal, untargeted detection of bacteria in tissues using metabolomics workflows, veröffentlich in: Nat Commun 16, 165 (2025). https://doi.org/10.1038/s41467-024-55457-7

 

Contact about the article 

Prof. Dr. Nicole Strittmatter
Technische University Munich
Professur für Analytische Chemie
TUM School of Natural Sciences - Department Biosciences
+49 89 289 13321
nicole.strittmatter@tum.de

 

Press contact

Ulrich Meyer
presse@tum.de
Teamwebsite

Original article: https://www.tum.de/en/news-and-events/all-news/press-releases/details/identifying-pathogens-within-minutes-instead-of-days 



◄ Back to: News and Events
To top

TUM School of Natural Sciences

Technische Universität
München

Boltzmannstr. 10
85748 Garching

If you are a member of our academic team, whether as a professor or research staff, and you would like your latest achievements and successes to be featured in this section, we kindly ask you to get in touch with us (Email). 

 

Our NAT Wiki Blog

Our events

Location
CH 21010
As part of
Lecture Series: Seminar in Organic Chemistry and Biochemistry
Comment

Speaker: Prof. Panče Naumov, New York University Abu Dhabi (United Arab Emirates)

Location
CPA EG.006A
As part of
CPA Seminar
Comment

Speaker: Prof. Ellen Sletten, UCLA USA

Location
CH 27402
As part of
Lecture Series: TUM Talks Inorganic Symposium
Comment

Speaker: Hansjörg Grützmacher, ETH Zürich (Guest of P. Coburger/T. Fässler)

  • additional information
Location
MIBE E.126
Comment

open for BEMP students, further information: https://www.bioengineering.tum.de/events

  • Privacy
  • Imprint
  • Accessibility