Skip to content
  • Emergency
  • NAT-Wiki
  • TUMonline
  • Moodle
  • Webmail
  • Webdisk
  • e-Journals
  • App Server
  • CIP Pool
  • de
  • en
  • TUM School of Natural Sciences
  • Technical University of Munich
Technical University of Munich
  • Homepage
  • News and Events
    • Bioscience
    • Chemistry
    • Physics
    • Awards
    • ERC Grants
    • Rankings
    • TUM in figures
    • Events
      • Open house day
        • 2024
      • Day of Diversity in Physics
      • Tag der Physik
        • Tag der Physik 2024
        • Tag der Physik 2023
      • Chemistry graduation ceremony
        • Archive
          • Chemistry graduation ceremony
          • Chemistry graduation ceremony
      • Physics graduation ceremony
        • Previous graduation ceremonies in physics
          • Physics graduation ceremony (June)
          • Physics graduation ceremony 2023 (November)
          • Physics graduation ceremony 2024 (June)
          • Physics graduation ceremony 2024 (November)
          • Physics graduation ceremony 2025 (February)
      • Physik-Kolloquium
  • Professors
  • Our School
    • Contact and directions
      • In an emergency: What to do?
    • Organization
      • Executive Board
      • School Council
      • Organigram
    • School Administration
    • Professors
      • TUM Junior Fellows
    • Graduate Center
    • Equal opportunities
      • Child care
      • Study and work with family
      • Support for Ukranian students
    • IT Office
      • IT-Service 5100
      • IT-Service 5400
        • Team
        • Support
        • CIP Pool
        • Info
        • TUMcard
    • Central Services
      • Elektronik 5100
      • Elektronik 5400
        • Mitarbeiter
        • Service
        • Auftragsabwicklung
        • Projekte
          • Heizungssteuerung
          • HV-Supply
          • Ionenfalle
          • Laser Shutter
          • LabVIEW Praktikum
          • Piezopulser
          • Potentiostat
          • Spirograph
        • Lageplan
      • Feinmechanik 5100
      • Feinmechanik 5400
        • Mitarbeiter
        • Service
        • Auftragsabwicklung
        • Lageplan
      • Glasbläserei
      • Kühlmittel und Gase
      • Strahlenschutz und Arbeitssicherheit
      • Teilbibliotheken
        • Dokumenten-Dienst
          • Subito
      • Ver- und Entsorgung
      • Lecture Technology and Physics Collection
      • Scientific computing
      • Zentrales Technologielabor
        • Technologielabor
        • Digitallabor
    • Outreach
      • TUM Open Campus Day
      • studium MINT
      • Unitag an der TUM
      • Open Doors with the Mouse 2023
    • Our History
      • Chemistry
        • Inorganic Chemistry
        • Organic Chemistry
        • Physical and Theoretical Chemistry
        • Technical Chemistry
      • Physics
  • Academics
  • Research
    • Main Research Areas
      • Accelerated Scientific Discovery
      • Biomolecular Engineering & Design
      • Clean Technology Solutions
      • Fundamental Forces and Cosmic Evolution
      • Fundamental Science for Health
      • Quantum Science & Technologies
    • Professional Profiles
    • Departments
    • Clusters
    • CRCs and Transregios
    • TUM Centers
    • Core Facilities
    • Research on Campus Garching
  • Intranet
  • Sitemap
  1. Homepage
  2. News and Events

Latest News

Photo sensor from smartphones helps with antimatter research at CERN

FRM II, Fundamental Forces and Cosmic Evolution, Accelerated Scientific Discovery, Research, Physics | 08.04.2025

TUM team enables measurements with unprecedented resolution in real time

The optical anti-matter imager with the 60 photo sensors taken from mobile phones. Photo: Andreas Heddergott / TUM
The detector was designed and built by Dr. Francesco Guatieri, Michael Berghold and Markus Münster (from left) at TUM's FRM II. Photo: Andreas Heddergott / TUM

At CERN, scientists from the AEgIS collaboration led by a team of the Technical University of Munich (TUM) have repurposed smartphone camera sensors to create a detector capable of tracking antiproton annihilations in real time with unprecedented resolution. This new device, described in a paper just published in Science Advances, can pinpoint antiproton annihilations with a resolution of about 0.6 micrometres, a 35-fold improvement over previous real-time methods.

Scientists working together in the “Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy” (AEgIS) and other experiments at CERN’s Antimatter Factory, such ALPHA and GBAR, are on a mission to measure the free-fall of antihydrogen under Earth's gravity with high precision, each using a different technique. AEgIS’s approach involves producing a horizontal beam of antihydrogen and measuring its vertical displacement using a device called a moiré deflectometer that reveals tiny deviations in motion and a detector that records the antihydrogen annihilation points.

“For AEgIS to work, we need a detector with incredibly high spatial resolution, and mobile camera sensors have pixels smaller than 1 micrometer,” says Francesco Guatieri from the research neutron source FRM II at TUM and Principal Investigator of the research. “We have integrated 60 of them in the single photographic detector, the Optical Photon and Antimatter Imager (OPHANIM), with the highest number of pixels currently operational: 3840 MPixels. Previously, photographic plates were the only option, but they lacked real-time capabilities. Our solution, demonstrated for antiprotons and directly applicable to antihydrogen, combines photographic-plate-level resolution, real-time diagnostics, self-calibration and a good particle collection surface, all in one device.”

Converted image sensors

Specifically, the researchers used optical image sensors that had previously been shown to be capable of imaging low-energy positrons in real time with unprecedented resolution. “We had to strip away the first layers of the sensors, which are made to deal with the advanced integrated electronics of mobile phones,” says Guatieri. “This required high-level electronic design and micro-engineering.” Master's students Michael Berghold and Markus Münster at the TUM School of Engineering and Design played a key role in the project.

Extraordinary resolution

“This is a game-changing technology for the observation of the tiny shifts due to gravity in an antihydrogen beam travelling horizontally, and it can also find broader applications in experiments where high position resolution is crucial, or to develop high-resolution trackers,” says AEgIS spokesperson Dr. Ruggero Caravita. “This extraordinary resolution enables us also to distinguish between different annihilation fragments, paving the way for new research on low-energy antiparticle annihilation in materials,” concludes Caravita.

 

Publication

  • M. Berghold et al: Real-time antiproton annihilation vertexing with sub-micron resolution. Science Advances https://www.science.org/doi/10.1126/sciadv.ads1176

 

More information and links

  • AEgIS-Kooperation mit de Europäische Organisation für Kernforschung CERN: home.cern/science/experiments/aegis
  • Die Forschungs-Neutronenquelle Heinz Maier-Leibnitz Forschungsreaktor München II FRM II: https://www.frm2.tum.de/frm2/startseite/

 

Contact about the research article

Dr. Francesco Guatieri
Group of Prof. Christoph Hugenschmidt at FRM II
Technical University of Munich
Francesco.Guatieri@frm2.tum.de
https://www.frm2.tum.de/en/frm2/home/

 

Press contact

communications(at)nat.tum.de 

 

Original article: AEgIS/CERN https://home.cern/news/news/experiments/aegis-transforms-smartphone-sensors-antimatter-camera-unprecedented 


◄ Back to: News and Events
To top

TUM School of Natural Sciences

Technische Universität
München

Boltzmannstr. 10
85748 Garching

If you are a member of our academic team, whether as a professor or research staff, and you would like your latest achievements and successes to be featured in this section, we kindly ask you to get in touch with us (Email). 

 

Our NAT Wiki Blog

Our events

Location
MIBE E.126
As part of
Seminar on Current Topics in BioEngineering (MIBE Seminar)
Comment

Dr. Calin Alexandru Ur, Project Director ELI NP and Dr. Dan Stutmann, Principal Research Scientist, Medical Program, ELI-NP open for BEMP students, further information: https://www.bioengineering.tum.de/events

Location
CH 26411
As part of
GDCh Colloquium
Comment

Speaker: Prof. Dr. Camilla J. Hansen, Goethe University Frankfurt

Location
PH HS1
Speaker
Prof. Dr. Christian Back
As part of
Lecture Series "Introduction to Current Aspects of Scientific Research"
Location
PH HS1
Speaker
Christian Schneider Ph.D.
As part of
Lecture Series "Introduction to Current Aspects of Scientific Research"
  • Privacy
  • Imprint
  • Accessibility