Skip to content
  • Emergency
  • NAT-Wiki
  • TUMonline
  • Moodle
  • Webmail
  • Webdisk
  • e-Journals
  • App Server
  • CIP Pool
  • de
  • en
  • TUM School of Natural Sciences
  • Technical University of Munich
Technical University of Munich
  • Homepage
  • News and Events
    • Bioscience
    • Chemistry
    • Physics
    • Awards
    • ERC Grants
    • Rankings
    • TUM in figures
    • Events
      • Open house day
        • 2024
      • Day of Diversity in Physics
      • Tag der Physik
        • Tag der Physik 2024
        • Tag der Physik 2023
      • Chemistry graduation ceremony
        • Archive
          • Chemistry graduation ceremony
          • Chemistry graduation ceremony
      • Physics graduation ceremony
        • Previous graduation ceremonies in physics
          • Physics graduation ceremony (June)
          • Physics graduation ceremony 2023 (November)
          • Physics graduation ceremony 2024 (June)
          • Physics graduation ceremony 2024 (November)
          • Physics graduation ceremony 2025 (February)
      • Physik-Kolloquium
  • Professors
  • Our School
    • Contact and directions
      • In an emergency: What to do?
    • Organization
      • Executive Board
      • School Council
      • Organigram
    • School Administration
    • Professors
      • TUM Junior Fellows
    • Graduate Center
    • Equal opportunities
      • Child care
      • Study and work with family
      • Support for Ukranian students
    • IT Office
      • IT-Service 5100
      • IT-Service 5400
        • Team
        • Support
        • CIP Pool
        • Info
        • TUMcard
    • Central Services
      • Elektronik 5100
      • Elektronik 5400
        • Mitarbeiter
        • Service
        • Auftragsabwicklung
        • Projekte
          • Heizungssteuerung
          • HV-Supply
          • Ionenfalle
          • Laser Shutter
          • LabVIEW Praktikum
          • Piezopulser
          • Potentiostat
          • Spirograph
        • Lageplan
      • Feinmechanik 5100
      • Feinmechanik 5400
        • Mitarbeiter
        • Service
        • Auftragsabwicklung
        • Lageplan
      • Glasbläserei
      • Kühlmittel und Gase
      • Strahlenschutz und Arbeitssicherheit
      • Teilbibliotheken
        • Dokumenten-Dienst
          • Subito
      • Ver- und Entsorgung
      • Lecture Technology and Physics Collection
      • Scientific computing
      • Zentrales Technologielabor
        • Technologielabor
        • Digitallabor
    • Outreach
      • TUM Open Campus Day
      • studium MINT
      • Unitag an der TUM
      • Open Doors with the Mouse 2023
    • Our History
      • Chemistry
        • Inorganic Chemistry
        • Organic Chemistry
        • Physical and Theoretical Chemistry
        • Technical Chemistry
      • Physics
  • Academics
  • Research
    • Main Research Areas
      • Accelerated Scientific Discovery
      • Biomolecular Engineering & Design
      • Clean Technology Solutions
      • Fundamental Forces and Cosmic Evolution
      • Fundamental Science for Health
      • Quantum Science & Technologies
    • Professional Profiles
    • Departments
    • Clusters
    • CRCs and Transregios
    • TUM Centers
    • Core Facilities
    • Research on Campus Garching
  • Intranet
  • Sitemap
  1. Homepage
  2. News and Events

Latest News

Quantum internet: "The biggest problem is data loss"

Quantum Science & Technologies, Research, Physics | 17.11.2023

Researchers around the world are working on a network which could connect quantum computers with one another over long distances. Andreas Reiserer, Professor of Quantum Networks at the Technical University of Munich (TUM), explains the challenges which have to be mastered and how atoms captured in crystals can help.

Picture: Astrid Eckert / TUM

Professor Reiserer, what is the quantum internet and how is it different from the classical internet as we know it?
The idea is the same: We use today's internet to connect computers with one another, while the quantum internet lets quantum computers communicate with one another. But in technical terms the quantum internet is much more complex. That's why only smaller networks have been realized as yet.

Why do we need a quantum network?
There are two main applications: First of all, networking quantum computers makes it possible to increase their computing power; second, a quantum network will make absolutely interception-proof encryption of communication possible. But there are other applications as well, for example networking telescopes to achieve a previously impossible resolution in order to look into the depths of the universe, or the possibility of synchronizing atomic clocks around the world extremely precisely, making it possible to investigate completely new physical questions.

How do quantum computers exchange information?
For the most part, exactly the same way as in the classical internet: Using photons. These photons are transmitted through optical cables. In the classical internet very strong signals are used, light pulses consisting of billions of photons. Here the information is transmitted using a binary code: Light on or light off, similar to Morse code. The quantum internet is different, though: It still uses a binary code, but the information isn't carried by light impulses with many photons, but rather by individual photons. This makes it possible to transmit quantum-mechanical states which bear extremely large amounts of information.

Why is it so much more difficult to build a quantum internet?
Photons are lost on their way through the optical cable. In a normal network signals can be easily amplified using repeaters which add more photons to the light pulses. But in the quantum internet if a single photon gets lost, all of the information transmitted is irretrievably destroyed. This kind of loss is the biggest problem when building a functional network. It could be solved using quantum repeaters, which my group is currently working on.

What challenges do you face?
Transmission over short distances already works very well. However, loss grows exponentially as distances increase. In order to build quantum repeaters, we split the overall distance into many small sub-segments. Buffers, actually small quantum computers, store the quantum state after each sub-segment until a photon has been transmitted to the next sub-segment. Then what's known as quantum teleportation can be used to subsequently "forward" the information to the transmitted photon. Doing this requires efficient small quantum computers, which we're in the process of developing.

What do these small quantum computers look like?
The best systems investigated yet use individual atoms which are captured in vacuum with laser light and cooled down to very low temperatures. However, this approach calls for an entire laboratory full of optical components, which makes it difficult to implement this approach on a small scale. Instead we use silicon crystals in which the individual atoms have been inserted and you could say are trapped in the crystal. The erbium atoms we use retain their quantum-mechanical properties under these conditions. This structure also requires low temperatures, but it's technically much, much simpler. We've been able to show that this system works in principle and that the erbium atoms, when they're excited, generate photons which are suitable for transporting quantum information. Here a major advantage is that we can build thousands or even millions of these structures on a single silicon chip.

Why is that important?
The need for buffering in the repeaters would mean it would take a very long time to transport information from one place to another. In order to achieve a faster rate, we use what's called multiplexing. This means the process is carried out as many times as possible in parallel. Our technology makes this feasible, and we're already working on realization.

Will we all be using the quantum internet in the future?
The situation may turn out to be similar to the classical internet: At first hardly anyone could imagine that today everyone would be walking around with internet access in their pockets, using satellites to determine our location and navigating using the internet. We're still at a very early stage as far as the quantum internet is concerned. Our current research is still on fundamentals, looking at things like: Can we connect these systems? Can we succeed in disseminating quantum states all over the world? The potentials of this kind of system that we know of today would already be revolutionary for some fields, and I'm sure there will be very many applications which nobody is even thinking of today.

YouTube: https://www.youtube.com/watch?v=3WI8xcJ3Foc

Subject matter expert:
Prof. Dr. Andreas Reiserer
Technical University of Munich
Professorship of Quantum Networks
Phone: +49 (89) 289 - 53650
andreas.reiserer(at)tum.de
www.ph.nat.tum.de/quantum-networks/homepage/

Publications:

  • Andreas Gritsch, Lorenz Weiss, Johannes Früh, Stephan Rinner, and Andreas Reiserer
    "Narrow Optical Transitions in Erbium-Implanted Silicon Waveguides"
    Phys. Rev. X 12, 041009
    https://journals.aps.org/prx/abstract/10.1103/PhysRevX.12.041009
  • Andreas Gritsch, Alexander Ulanowski, and Andreas Reiserer, "Purcell enhancement of single-photon emitters in silicon," Optica 10, 783-789 (2023)
    https://doi.org/10.1364/OPTICA.486167

TUM Corporate Communications Center:
Tel. +49 89 289 22778
presse(at)tum.de
www.tum.de


◄ Back to: News and Events
To top

TUM School of Natural Sciences

Technische Universität
München

Boltzmannstr. 10
85748 Garching

If you are a member of our academic team, whether as a professor or research staff, and you would like your latest achievements and successes to be featured in this section, we kindly ask you to get in touch with us (Email). 

 

Our NAT Wiki Blog

Our events

Location
MIBE E.126
As part of
Seminar on Current Topics in BioEngineering (MIBE Seminar)
Comment

Dr. Calin Alexandru Ur, Project Director ELI NP and Dr. Dan Stutmann, Principal Research Scientist, Medical Program, ELI-NP open for BEMP students, further information: https://www.bioengineering.tum.de/events

Location
CH 26411
As part of
GDCh Colloquium
Comment

Speaker: Prof. Dr. Camilla J. Hansen, Goethe University Frankfurt

Location
PH HS1
Speaker
Prof. Dr. Christian Back
As part of
Lecture Series "Introduction to Current Aspects of Scientific Research"
Location
PH HS1
Speaker
Christian Schneider Ph.D.
As part of
Lecture Series "Introduction to Current Aspects of Scientific Research"
  • Privacy
  • Imprint
  • Accessibility