Skip to content
  • Emergency
  • NAT-Wiki
  • TUMonline
  • Moodle
  • Webmail
  • Webdisk
  • e-Journals
  • App Server
  • CIP Pool
  • de
  • en
  • TUM School of Natural Sciences
  • Technical University of Munich
Technical University of Munich
  • Homepage
  • News and Events
    • Bioscience
    • Chemistry
    • Physics
    • Awards
    • ERC Grants
    • Rankings
    • TUM in figures
    • Events
      • Open house day
        • 2024
      • Day of Diversity in Physics
      • Tag der Physik
        • Tag der Physik 2024
        • Tag der Physik 2023
      • Chemistry graduation ceremony
        • Archive
          • Chemistry graduation ceremony
          • Chemistry graduation ceremony
      • Physics graduation ceremony
        • Previous graduation ceremonies in physics
          • Physics graduation ceremony (June)
          • Physics graduation ceremony 2023 (November)
          • Physics graduation ceremony 2024 (June)
          • Physics graduation ceremony 2024 (November)
          • Physics graduation ceremony 2025 (February)
      • MChG-Kolloquium
      • Physik-Kolloquium
  • Professors
  • Our School
    • Contact and directions
      • In an emergency: What to do?
    • Organization
      • Executive Board
      • School Council
      • Organigram
    • School Administration
    • Professors
      • TUM Junior Fellows
    • Graduate Center
    • Equal opportunities
      • Child care
      • Study and work with family
      • Support for Ukranian students
    • IT Office
      • IT-Service 5100
      • IT-Service 5400
        • Team
        • Support
        • CIP Pool
        • Info
        • TUMcard
    • Central Services
    • Outreach
      • TUM Open Campus Day
      • studium MINT
      • Unitag an der TUM
      • Open Doors with the Mouse 2023
    • Our History
      • Chemistry
        • Inorganic Chemistry
        • Organic Chemistry
        • Physical and Theoretical Chemistry
        • Technical Chemistry
      • Physics
  • Academics
  • Research
    • Main Research Areas
      • Accelerated Scientific Discovery
      • Biomolecular Engineering & Design
      • Clean Technology Solutions
      • Fundamental Forces and Cosmic Evolution
      • Fundamental Science for Health
      • Quantum Science & Technologies
    • Professional Profiles
    • Departments
    • Clusters
    • CRCs and Transregios
    • TUM Centers
    • Core Facilities
    • Research on Campus Garching
  • Intranet
  • Sitemap
  1. Homepage
  2. News and Events

Latest News

Shedding Light on the Building Blocks of Nature

Quantum Science & Technologies, Accelerated Scientific Discovery, Research, Physics | 05.06.2025

Quantum Computers Simulate Fundamental Physics

Research and authors team at TUM (from left): Prof. Dr. Frank Pollmann, graduate student Bernhard Jobst, Prof. Dr. Michael Knap. Bild: TUM School of Natural Sciences

Fundamental forces in nature are described by complex theoretical models. However, understanding them is challenging due to the complexity of simulating these models, which is beyond the capabilities of conventional supercomputers. A research team from the Technical University of Munich (TUM), Princeton University, and Google Quantum AI has now demonstrated that quantum computers are a powerful tool to investigate such fundamental physics and to glimpse into the dynamics of the building blocks of nature.

The research, published in the academic journal Nature, represents an essential step in quantum computing and demonstrates its potential by directly simulating fundamental interactions with Google's quantum processor. In the future, researchers could use this approach to gain deeper insights into particle physics, quantum materials, and even the nature of space and time itself. The aim is to understand how nature works at its most fundamental level, described by so-called gauge theories.

Determining the fundamental rules of the universe

"Our work shows how quantum computers can help us explore the fundamental rules that govern our universe," says co-author Michael Knap, Professor of Collective Quantum Dynamics at the TUM School of Natural Sciences. "By simulating these interactions in the laboratory, we can test theories in new ways."

Pedram Roushan, co-author of this work from Google Quantum AI emphasizes: “Harnessing the power of the quantum processor, we studied the dynamics of a specific type of gauge theory and observed how particles and the invisible ‘strings’ that connect them evolve over time.”

Tyler Cochran, first author and graduate student at Princeton, says: “By adjusting effective parameters in the model, we could tune properties of the strings. They can fluctuate strongly, become tightly confined, or even break.” He explains that the data from the quantum processor reveals the hallmark behaviors of such strings, which have direct analogs to phenomena in high-energy particle physics. The results underscore the potential for quantum computers to facilitate scientific discovery in fundamental physics and beyond.

 

Publication

T. A. Cochran, B. Jobst, E. Rosenberg, et al. Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories, published in Nature, 4. Juni 2025 – DOI: 10.1038/s41586-25-08999-9

 

Further information and links

The research was supported, in part, by the UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee [grant number EP/Y036069/1], the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy–EXC–2111–390814868, TRR 360 – 492547816, DFG grants No. KN1254/1-2, KN1254/2-1, DFG FOR 5522 Research Unit (project id 499180199), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 851161 and No. 771537), the European Union (grant agreement No 101169765), as well as the Munich Quantum Valley, which is supported by the Bavarian state government with funds from the Hightech Agenda Bayern Plus.

 

Contacts to this article:

Prof. Dr. Michael Knap
Professor for Collective Quantum Dynamics
Technical University of Munich
TUM School of Natural Sciences
michael.knap@ph.tum.de

Prof. Dr. Frank Pollmann
Professor for Solid-State Theory
Technical University of Munich
TUM School of Natural Sciences
+49 89 289 53760
frank.pollmann@tum.de

Dr. Pedram Roushan
Google Quantum AI
+1 609 649 2317
pedramr@google.com

 

Corporate Communications Center

Ulrich Meyer
presse@tum.de
Teamwebsite

Original article: https://www.tum.de/en/news-and-events/all-news/press-releases/details/shedding-light-on-the-building-blocks-of-nature 


◄ Back to: News and Events
To top

TUM School of Natural Sciences

Technische Universität
München

Boltzmannstr. 10
85748 Garching

If you are a member of our academic team, whether as a professor or research staff, and you would like your latest achievements and successes to be featured in this section, we kindly ask you to get in touch with us (Email). 

 

Our NAT Wiki Blog

Our events

Location
MIBE E.126
As part of
Seminar of the Atomistic Modeling Center
Comment

Speaker: Prof. Kjell Jorner (ETH Zürich)

  • additional information
Location
CH 63214
As part of
Lecture Series: Colloquium on Physical and Theoretical Chemistry
Comment

Speaker: Dr. Michal Farnik, J. Heyrovsky Institute of Physical Chemistry, Prague. (Guest of Dr. Jozef Lengyel)

  • additional information
Location
PH HS2
As part of
Award Ceremony „TUM Distinguished Affiliated Professorship”
  • additional information
Location
CPA EG.006A
As part of
CPA Seminar
Comment

Prof. Stefan Zielonka, Merck / TU Darmstadt

  • Privacy
  • Imprint
  • Accessibility