Skip to content
  • Emergency
  • NAT-Wiki
  • TUMonline
  • Moodle
  • Webmail
  • Webdisk
  • e-Journals
  • App Server
  • CIP Pool
  • de
  • en
  • TUM School of Natural Sciences
  • Technical University of Munich
Technical University of Munich
  • Homepage
  • News and Events
    • Bioscience
    • Chemistry
    • Physics
    • Awards
    • ERC Grants
    • Rankings
    • TUM in figures
    • Events
      • Open house day
        • 2024
      • Day of Diversity in Physics
      • Tag der Physik
        • Tag der Physik 2024
        • Tag der Physik 2023
      • Chemistry graduation ceremony
        • Archive
          • Chemistry graduation ceremony
          • Chemistry graduation ceremony
      • Physics graduation ceremony
        • Previous graduation ceremonies in physics
          • Physics graduation ceremony (June)
          • Physics graduation ceremony 2023 (November)
          • Physics graduation ceremony 2024 (June)
          • Physics graduation ceremony 2024 (November)
          • Physics graduation ceremony 2025 (February)
      • Physik-Kolloquium
  • Professors
  • Our School
    • Contact and directions
      • In an emergency: What to do?
    • Organization
      • Executive Board
      • School Council
      • Organigram
    • School Administration
    • Professors
      • TUM Junior Fellows
    • Graduate Center
    • Equal opportunities
      • Child care
      • Study and work with family
      • Support for Ukranian students
    • IT Office
      • IT-Service 5100
      • IT-Service 5400
        • Team
        • Support
        • CIP Pool
        • Info
        • TUMcard
    • Central Services
      • Elektronik 5100
      • Elektronik 5400
        • Mitarbeiter
        • Service
        • Auftragsabwicklung
        • Projekte
          • Heizungssteuerung
          • HV-Supply
          • Ionenfalle
          • Laser Shutter
          • LabVIEW Praktikum
          • Piezopulser
          • Potentiostat
          • Spirograph
        • Lageplan
      • Feinmechanik 5100
      • Feinmechanik 5400
        • Mitarbeiter
        • Service
        • Auftragsabwicklung
        • Lageplan
      • Glasbläserei
      • Kühlmittel und Gase
      • Strahlenschutz und Arbeitssicherheit
      • Teilbibliotheken
        • Dokumenten-Dienst
          • Subito
      • Ver- und Entsorgung
      • Lecture Technology and Physics Collection
      • Scientific computing
      • Zentrales Technologielabor
        • Technologielabor
        • Digitallabor
    • Outreach
      • TUM Open Campus Day
      • studium MINT
      • Unitag an der TUM
      • Open Doors with the Mouse 2023
    • Our History
      • Chemistry
        • Inorganic Chemistry
        • Organic Chemistry
        • Physical and Theoretical Chemistry
        • Technical Chemistry
      • Physics
  • Academics
  • Research
    • Main Research Areas
      • Accelerated Scientific Discovery
      • Biomolecular Engineering & Design
      • Clean Technology Solutions
      • Fundamental Forces and Cosmic Evolution
      • Fundamental Science for Health
      • Quantum Science & Technologies
    • Professional Profiles
    • Departments
    • Clusters
    • CRCs and Transregios
    • TUM Centers
    • Core Facilities
    • Research on Campus Garching
  • Intranet
  • Sitemap
  1. Homepage
  2. News and Events
  3. Physics

News Department of Physics

Three ERC Grants for Researchers at NAT

ERC, Research, Chemistry, Physics, Award | 11.04.2024

Prof. Nora Brambilla, Prof. Thorsten Bach, and Prof. Frank Pollmann have each been awarded an ERC Grant. Congratulations!

Profile Pictures: Andreas Heddergott/TUM

Prof. Dr. Thorsten Bach (ERC Advanced Grant)

Active pharmaceutical ingredients are often composed of chiral organic compounds. That means that they consist of molecules, known as enantiomers, that are mirror images, but cannot be superimposed one upon the other. In pharmaceutical applications, this difference may result in one enantiomer tending to heal a patient, while the other causes side effects. Until now, considerable effort was needed to separate the undesired molecules from the mixture containing both enantiomers – the racemate – because it was not possible to transform the mixture into the desired final product. This is the starting point of the CALIDE project, headed by Prof. Thorsten Bach. Based on successful preliminary work, photochemical reactions will be used to convert the racemate of an organic compound into the desired enantiomer.

Prof. Thorsten Bach holds the Chair of Organic Chemistry I. He was awarded an ERC Advanced Grant in 2015 and received the Gottfried Wilhelm Leibniz Prize in 2020.

 

Prof. Dr. Nora Brambilla (ERC Advanced Grant)

Quarks are the elementary constituents of matter. The properties and interaction of quarks and gluons, which are the carriers of the strong force, are of paramount importance in the quest to understand the behavior of matter at the most fundamental level. The strong force is unique among the four forces of nature for displaying the phenomenon of confinement in the low energy region, making its study particularly challenging. For a long time, quarks were observed to combine in hadrons only as quark-antiquark (mesons, like the pion) or in group of three (baryons, like protons and neutrons that make up the atomic nuclei). In the last two decades new exotic hadrons, called XYZ, have been discovered at particle accelerator experiments around the world. They display striking and unexpected characteristics and their composition in terms of quarks and gluons is still unclear. The research project “EFT-XYZ” by Prof. Nora Brambilla aims at investigating these new forms of matter. With an unprecedented combination of quantum effective field theories and massive computer simulations this research will produce a breakthrough in our ability to calculate the XYZ properties in vacuum and in medium, granting new insight on the fundamental strong force.

Prof. Nora Brambilla is head of the "Theoretical Particle and Nuclear Physics" group at the TUM School of Natural Sciences and founder of the TUMQCD Lattice Collaboration. Prof. Brambilla is a Member of the ORIGINS Cluster of Excellence.

 

Prof. Dr. Frank Pollmann (ERC Proof of Concept Grant)

Quantum computers can perform certain tasks more effectively than conventional classical computers. However, current quantum computers and probably also the models of the near future are still severely limited—for example by the loss of coherence due to the coupling with the environment and also by the limited number of "qubits". In order to be able to use these quantum computers despite those limitations, algorithms are required that are specifically designed for the respective platform. With the QTEngine project, Frank Pollmann will create a “quantum tensor network” based software package that forms the basis for the development of, e.g., quantum simulations and quantum machine learning, regardless of the computer used. The aim is to make it easier for researchers and commercial developers to work with quantum computers.

Frank Pollmann is Professor of Theoretical Solid State Physics at TUM. The ERC has already funded his research with a Consolidator Grant. He is a member of the MCQST Cluster of Excellence.

Original Article: https://www.tum.de/en/news-and-events/all-news/press-releases/details/three-erc-advanced-grants-for-tum-researchers 

Corporate Communications Center

  • Paul Hellmich / Julia Rinner / Magdalena Eisenmann
  • paul.hellmich@tum.de
  • presse@tum.de
  • Teamwebsite

◄ Back to: Physics
To top

TUM School of Natural Sciences

Technische Universität
München

Boltzmannstr. 10
85748 Garching

  • Privacy
  • Imprint
  • Accessibility