Zum Inhalt springen
  • Notfall
  • NAT-Wiki
  • TUMonline
  • Moodle
  • Webmail
  • Webdisk
  • e-Journals
  • App Server
  • CIP Pool
  • de
  • en
  • TUM School of Natural Sciences
  • Technische Universität München
Technische Universität München
  • Startseite
  • Aktuelles
    • Bioscience
    • Chemie
    • Physik
    • Auszeichnungen
    • ERC Grants
    • Rankings
    • TUM in Zahlen
    • Veranstaltungen
      • Tag der offenen Tür
        • 2024
      • Day of Diversity in Physics
      • Tag der Physik
        • Tag der Physik 2024
        • Tag der Physik 2023
      • Absolventinnen und Absolventenfeier der Chemie
        • Archiv
          • 2024
          • 2023
      • Absolventinnen- und Absolventenfeier Physik
        • Vorangegangene Abschlussfeiern Physik
          • Abschlussfeier Physik 2023 (Juni)
          • Abschlussfeier Physik 2023 (November)
          • Abschlussfeier Physik 2024 (Juni)
          • Absolventinnen- und Absolventenfeier Physik 2024 (November)
          • Absolventinnen- und Absolventenfeier Physik 2025 (Februar)
          • Absolventinnen- und Absolventenfeier Physik 2025 (Juni)
      • MChG-Kolloquium
      • Physik-Kolloquium
  • Professuren
  • Unsere School
    • Kontakt und Anfahrt
      • Was tun im Notfall?
    • Organisation
      • Fakultätsvorstand
      • School Council
      • Organigramm
    • School Administration
    • Professuren
      • TUM Junior Fellows
    • Graduiertenzentrum
    • Talent Management und Diversity
      • Kinderbetreuung
      • Familie
      • Ukraine
    • IT-Office
      • IT-Service 5100
      • IT-Service 5400
        • Mitarbeiter
        • Support
        • CIP Pool
        • Info
        • TUMcard
    • Zentrale Dienste
    • Öffentlichkeit
      • TUM Open Campus Day
      • studium MINT
      • Unitag an der TUM
      • Maus-Türöffner-Tag 2023
    • Historie
      • Chemie
        • Anorganische Chemie
        • Organische Chemie
        • Physikalische und Theoretische Chemie
        • Technische Chemie
      • Physik
  • Studium und Promotion
  • Forschung
    • Forschungsschwerpunkte
      • Accelerated Scientific Discovery
      • Biomolecular Engineering & Design
      • Clean Technology Solutions
      • Fundamental Forces and Cosmic Evolution
      • Fundamental Science for Health
      • Quantum Science & Technologies
    • Professional Profiles
    • Departments
    • Clusters
    • SFB und Transregios
    • TUM Forschungszentren
    • Core Facilities
    • Forschungscampus Garching
  • Intranet
  • Sitemap
  1. Startseite
  2. Aktuelles

Aktuelles

Neue Methode für das Design künstlicher Proteine

Biomolecular Engineering & Design, Forschung, Bioscience | 21.11.2024

Große neue Proteine entwerfen mit KI

De novo Proteindesign mit neuer Methode
Wenn Sie externe Videos von YouTube aktivieren, werden Daten automatisiert an diesen Anbieter übertragen.

Forschende haben eine neue Methode zum Design neuer Proteine mit maßgeschneiderten Eigenschaften entwickelt. Ihr Ansatz nutzt unter anderem die akkurate Strukturvorhersage der Software Alphafold2, eine virtuelle Überlagerung von Aminosäuren und "Gradient Descent". Beim Gradient Descent Prozess wird Schritt für Schritt die vorhergesagte Proteinstruktur verbessert, bis die gewünschte Struktur erreicht ist. Farbliche Codierung in der Animation: Je mehr sich die Farbe dem dunkelblauen Farbton nähert, desto sicherer ist sich das Programm in der Strukturvorhersage.

Das Team hat eine neue Methode entwickelt, um neue große Proteine zu designen. Links: Erstautor Christopher Frank, rechts: Prof. Hendrik Dietz. Bild: Andreas Heddergott / TUM

Passgenaue Antikörper für Therapien, Biosensoren für Diagnosen oder Enzyme für chemische Reaktionen herzustellen – das sind Ziele des Proteindesigns. Ein internationales Forschungsteam hat nun eine Methode entwickelt, mit der sich große neue Proteine am Computer besser als bisher entwerfen und im Labor mit den gewünschten Eigenschaften herstellen lassen. Sie nutzen dafür unter anderem die Fähigkeiten der KI-basierten Software Alphafold2, für die es den Chemie-Nobelpreis gab, auf eine neue Art und Weise.

Ob als Bausteine, Transportsysteme, Enzyme oder Antikörper, Proteine spielen eine lebenswichtige Rolle in unserem Körper. Forschende versuchen sie daher nachzubauen oder sogenannte De-novo-Proteine zu entwerfen, die in der Natur gar nicht vorkommen. Solche künstlichen Proteine sollen zum Beispiel bestimmte Viren binden oder Wirkstoffe transportieren. Um sie zu entwickeln, nutzen Wissenschaftlerinnen und Wissenschaftler zunehmend maschinelles Lernen. Erst kürzlich wurden Fortschritte in diesem Gebiet mit dem Chemie-Nobelpreis gewürdigt: Dieser ging dieses Jahr an David Baker, einen Pionier des de novo Proteindesigns, und an die Entwickler der Software Alphafold2 Demis Hassabis und John Jumper. Alphafold2 ermöglicht es, Proteinstrukturen mit hoher Genauigkeit am Computer vorherzusagen.

Ein Team unter Leitung von Hendrik Dietz, Professor für Biomolekulare Nanotechnologie an der Technischen Universität München (TUM), und von Sergey Ovchinnikov, Professor für Biologie am Massachusetts Institute of Technology (MIT), hat nun ein Verfahren entwickelt, mit dem sich die akkurate Strukturvorhersage von Alphafold2 zusammen mit einem sogenannten Gradient Descent Ansatz für effizientes Proteindesign nutzen lässt. Publiziert wurde es im Fachjournal Science.

Gradient Descent ist eine gängige Methode zur Modelloptimierung. In einem schrittweisen Prozess kann man damit Abweichungen zur gewünschten Zielfunktion erkennen und die Parameter immer weiter anpassen, bis das optimale Ergebnis erreicht ist. Im Proteindesign kann Gradient Descent dabei helfen, die durch AlphaFold2 vorhergesagte Proteinstruktur neuer Proteine gegen die gewünschte Proteinstruktur abzugleichen. So können Wissenschaftlerinnen und Wissenschaftler ihre neu entworfene Aminosäurenkette und die daraus entstehende Struktur immer weiter optimieren. Letztere bestimmt maßgeblich die Stabilität und Funktion des Proteins und hängt von feinen energetischen Wechselwirkungen ab.

Bessere Anpassungen durch virtuelle Überlagerung der Bausteine

Mit dem neuen Verfahren lassen sich große neue Proteine besser als bisher designen und mit den gewünschten Eigenschaften versehen, zum Beispiel um passgenau an andere Proteine zu binden. Ihr Designprozess unterscheidet sich an verschiedenen Stellen von bisherigen Vorgehensweisen.

„Wir haben den Prozess für neue Proteine so gestaltet, dass wir zunächst die Grenzen des physikalisch Möglichen außen vor lassen. Üblicherweise geht man an jeder Stelle der Aminosäurenkette von nur einem der 20 möglichen Bausteine aus. Wir nutzen stattdessen eine Variante, bei der alle Möglichkeiten virtuell überlagert sind“, sagt Christopher Frank, Doktorand am Lehrstuhl für Biomolekulare Nanotechnologie und Erstautor der Studie.

Diese virtuelle Überlagerung lässt sich so nicht direkt in ein tatsächlich produzierbares Protein umsetzen. Aber sie ermöglicht es, das Protein virtuell immer weiter zu optimieren. „Über mehrere Wiederholungen hinweg verbessern wir die Anordnung der Aminosäuren, bis das neue Protein sehr nah an der Struktur dran ist, die wir gerne hätten“, sagt Christopher Frank. Aus dieser optimierten Struktur wird dann die Abfolge von Aminosäuren ermittelt, die sich auch tatsächlich im Labor umsetzen lässt.

Der entscheidende Test: Wie schneiden die Vorhersagen in echt ab?

Die entscheidende Probe für alle neu entworfenen Proteine: Entspricht die echte Struktur auch dem erdachten Konstrukt und der gewünschten Funktion? Das Team hat mit der neuen Methode über 100 Proteine nicht nur virtuell entworfen, sondern auch im Labor hergestellt und experimentell überprüft. „Wir konnten beweisen, dass unsere designten Strukturen der echten Umsetzung sehr genau entsprechen“, sagt Christopher Frank.

Mit ihrer neuen Methode konnten sie Proteine aus bis zu 1000 Aminosäuren herstellen. „Wir nähern uns damit der Größe von Antikörpern an und können – wie bei Antikörpern auch – dann mehrere gewünschte Funktionen in ein solches Protein integrieren“, erläutert Hendrik Dietz. „Das könnten beispielsweise Motive zur Erkennung und Unterdrückung von Krankheitserregern sein.“

 

Publikationen

Frank C, Khoshouei A, Fuβ L, Schiwietz D, Putz D, Weber L, Zhao Z, Hattori M, Feng S, de Stigter Y, Ovchinnikov S, Dietz H: Scalable protein design using optimization in a relaxed sequence space. Science, October 2024. www.science.org/doi/10.1126/science.adq1741

 

Weitere Informationen und Links

  • Hochauflösendes Bildmaterial
  • Am Projekt beteiligt sind: Technische Universität München (TUM), Massachusetts Institute of Technology, Fudan University, Changping Laboratory, Harvard University,
  • Prof. Hendrik Dietz forscht am Munich Institute of Biomedical Engineering (MIBE), einem Integrativen Forschungsinstitut der TUM. Am MIBE entwickeln und verbessern Forschende aus der Medizin, den Natur- und Ingenieurwissenschaften und der Informatik gemeinsam Verfahren zur Prävention, Diagnose und Behandlung von Krankheiten. Die Aktivitäten reichen dabei von der Untersuchung grundlegender wissenschaftlicher Prinzipien bis zu deren Anwendung in medizinischen Geräten, Medikamenten oder Computerprogrammen.
  • Die Arbeit wurde gefördert von: National Science Foundation, National Institutes of Health, European Research Council, Deutsche Forschungsgemeinschaft, Education Commission of Shanghai Municipality, TUM Innovation Network Projekt RISE

 


Technische Universität München

Corporate Communications Center

  • Carolin Lerch
  • presse@tum.de
  • Teamwebsite

 

Kontakte zum Artikel:

Prof. Dr. Hendrik Dietz
Technische Universität München
Lehrstuhl für Biomolekulare Nanotechnologie
Tel: +49 89 289 11615
dietz@tum.de

 

Originalartikel: https://www.tum.de/aktuelles/alle-meldungen/pressemitteilungen/details/neue-methode-fuer-das-design-kuenstlicher-proteine 
 


◄ Zurück zu: Aktuelles
To top

TUM School of Natural Sciences

Technische Universität
München

Boltzmannstr. 10
85748 Garching

Wenn Sie Mitglied unseres akademischen Teams sind – sei es als Professor oder wissenschaftlicher Mitarbeiter – und Sie möchten, dass Ihre neuesten Errungenschaften und Erfolge hier präsentiert werden, bitten wir Sie herzlich, sich mit uns in Verbindung zu setzen (Email).

Unser NAT Wiki Blog

Aktuelle News aus der TUM

Ob aus Forschung, Studium oder Hochschulpolitik. Ob über Quantenphysik, Medizin oder Künstliche Intelligenz. Ob als Meldung, Podcast oder Magazin – bleiben Sie stets auf dem Laufenden über das Neueste von der Technischen Universität München.

Unsere Veranstaltungen

Ort
CRC 3002
Im Rahmen von
Vortragsreihe: Kolloquium zur Physikalischen und Theoretischen Chemie
Kommentar

Speaker: Thalappil Pradeep, Indian Institute of Technology Madras (Guest of Prof. Heiz)

  • Zusatzinformationen
Ort
MIBE E.126
Kommentar

open for BEMP students, further information: https://www.bioengineering.tum.de/events

Ort
PH HS1
Sprecher*in
Prof. Dr. Lorenzo Tancredi
Im Rahmen von
Ringvorlesung "Einführung in aktuelle Aspekte wissenschaftlicher Forschung"
Ort
PH HS1
Sprecher*in
Prof. Dr. Karen Alim
Im Rahmen von
Ringvorlesung "Einführung in aktuelle Aspekte wissenschaftlicher Forschung"
  • Datenschutz
  • Impressum
  • Barrierefreiheit