Zum Inhalt springen
  • Notfall
  • NAT-Wiki
  • TUMonline
  • Moodle
  • Webmail
  • Webdisk
  • e-Journals
  • App Server
  • CIP Pool
  • de
  • en
  • TUM School of Natural Sciences
  • Technische Universität München
Technische Universität München
  • Startseite
  • Aktuelles
    • Bioscience
    • Chemie
    • Physik
    • Auszeichnungen
    • ERC Grants
    • Rankings
    • TUM in Zahlen
    • Veranstaltungen
      • Tag der offenen Tür
        • 2024
      • Tag der Physik
        • Tag der Physik 2024
        • Tag der Physik 2023
      • Absolventinnen und Absolventenfeier der Chemie
        • Archiv
          • 2024
          • 2023
      • Absolventinnen- und Absolventenfeier Physik
        • Vorangegangene Abschlussfeiern Physik
          • Abschlussfeier Physik 2023 (Juni)
          • Abschlussfeier Physik 2023 (November)
          • Abschlussfeier Physik 2024 (Juni)
          • Absolventinnen- und Absolventenfeier Physik 2024 (November)
          • Absolventinnen- und Absolventenfeier Physik 2025 (Februar)
          • Absolventinnen- und Absolventenfeier Physik 2025 (Juni)
      • MChG-Kolloquium
      • Physik-Kolloquium
  • Professuren
  • Unsere School
    • Kontakt und Anfahrt
      • Was tun im Notfall?
    • Organisation
      • Fakultätsvorstand
      • School Council
      • Organigramm
    • School Administration
    • Professuren
      • TUM Junior Fellows
    • Graduiertenzentrum
    • Talent Management und Diversity
      • Kinderbetreuung
      • Familie
      • Ukraine
    • IT-Office
      • IT-Service 5100
      • IT-Service 5400
        • Mitarbeiter
        • Support
        • CIP Pool
        • Info
        • TUMcard
    • Zentrale Dienste
    • Öffentlichkeit
      • TUM Open Campus Day
      • studium MINT
      • Unitag an der TUM
      • Maus-Türöffner-Tag 2023
    • Historie
      • Chemie
        • Anorganische Chemie
        • Organische Chemie
        • Physikalische und Theoretische Chemie
        • Technische Chemie
      • Physik
  • Studium und Promotion
  • Forschung
    • Forschungsschwerpunkte
      • Accelerated Scientific Discovery
      • Biomolecular Engineering & Design
      • Clean Technology Solutions
      • Fundamental Forces and Cosmic Evolution
      • Fundamental Science for Health
      • Quantum Science & Technologies
    • Professional Profiles
    • Departments
    • Clusters
    • SFB und Transregios
    • TUM Forschungszentren
    • Core Facilities
    • Forschungscampus Garching
  • Intranet
  • Sitemap
  1. Startseite
  2. Aktuelles

Aktuelles

Weltrekord für Lithiumionen-Leiter

Clean Technology Solutions, Forschung, Chemie | 09.05.2025

TUM-Forschende entwickeln neues Material für Festkörperbatterien

Prof. Thomas F. Fässler in seinem Labor am Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien. Bild: Dr. Robert Reich / TUM

Festkörperbatterien gelten als wichtige Zukunftstechnologie: Sie können mehr Energie speichern und bestehen nicht aus feuergefährlichen Materialien wie die derzeit üblichen Lithium-Batterien. Forschende der TUM und der TUMint.Energy Research GmbH haben nun einen wichtigen Schritt bei der Verbesserung von Festkörperbatterien gemacht. Sie entwickelten ein neues Material aus Lithium, Antimon und Scandium, das Lithiumionen über 30% schneller leitet als alle bisher bekannten Stoffe.

Das Team um Prof. Thomas F. Fässler vom Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien ersetzte einen Teil des Lithiums in der Verbindung Lithium-Antimonid durch das Metall Scandium. Dadurch entstehen gezielt Lücken, sogenannte Leerstellen, im Kristallgitter des Leitermaterials. Diese Lücken helfen den Lithiumionen, sich leichter und schneller zu bewegen und ermöglichten den neuen Weltrekord.

Da der Wert so deutlich über denen der bekannten Materialien liegt, haben sie sich an den Lehrstuhl für Technische Elektrochemie um Prof. Hubert Gasteiger der TUM gewandt, um das Ergebnis abzusichern. Koautor Tobias Kutsch, der die weiteren Tests durchführte bemerkte: „Weil das Material auch Strom leitet, war das eine besondere Herausforderung und wir mussten unsere Messmethoden dafür anpassen.“

Fässler sieht große Potentiale für das neue Material: „Unser Ergebnis stellt derzeit einen wesentlichen Fortschritt in der Grundlagenforschung dar. Mit dem Einbau von kleinen Mengen Scandium sind wir auf ein neues Prinzip gestoßen, das sich als richtungsweisend für andere Elementkombinationen erweisen könnte. Für eine Anwendung in einer Batteriezelle sind noch viele Tests notwendig. Wir sind zuversichtlich, weil Materialien, die sowohl Ionen als auch Elektronen leiten können, sich besonders gut als Zusatz in Elektroden eignen. Da sich daraus vielversprechende praktische Anwendungen ergeben können, haben wir unsere Entwicklung auch bereits zum Patent angemeldet.“ Neben der höheren Geschwindigkeit bietet das Material auch thermische Stabilität und ist mit bewährten chemischen Verfahren einfach herzustellen.

Die Forschenden haben mit ihrer Arbeit sogar eine völlig neue Substanzklasse entdeckt, wie Erstautorin Jingwen Jiang, Forscherin an der TUMint.Energy Research GmbH, hervorhebt: „Unsere Kombination besteht aus Lithium-Antimon und kann einfach auch auf Lithium-Phosphor übertragen werden. Während der bisherige Rekordhalter auf Lithium-Schwefel basierte und zur Optimierung fünf weitere Elemente benötigt, wird bei uns lediglich Scandium als weitere Komponente gebraucht. Wir gehen davon aus, dass unsere Entdeckung über dieses Beispiel hinaus Bedeutung für die Erhöhung der Leitfähigkeit bei anderen Substanzen haben kann.“

 

Publikation

Jingwen Jiang, Tobias Kutsch, Wilhelm Klein, Manuel Botta, Anatoliy Senyshyn, Robert J. Spranger, Volodymyr Baran, Leo van Wüllen, Hubert A. Gasteiger, Thomas F. Fässler: Scandium Induced Structural Disorder and Vacancy Engineering in Li3Sb – Superior Ionic Conductivity in Li3−3xScxSbv, erschienen in Advanced Energy Materials, 2025, 2500683 https://doi.org/10.1002/aenm.202500683

 

Weitere Informationen und Links

  • Dieser Erfolg basiert auf der engen Zusammenarbeit von TUM und TUMint.Energy Research GmbH im Rahmen einer strategischen Förderung durch das Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie.
  • TUM School of Natural Sciences
  • Chair of Inorganic Chemistry with Focus on Novel Materials

 

Kontakte zum Artikel:

Prof. Dr. Thomas Fässler
Technische Universität München
TUM School of Natural Sciences
Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien
+49 89 289 13131
thomas.faessler@lrz.tum.de

 

Technische Universität München

Corporate Communications Center

  • Ulrich Meyer
  • presse@tum.de
  • Teamwebsite

Originalartikel: https://www.tum.de/aktuelles/alle-meldungen/pressemitteilungen/details/weltrekord-fuer-lithiumionen-leiter 


◄ Zurück zu: Aktuelles
To top

TUM School of Natural Sciences

Technische Universität
München

Boltzmannstr. 10
85748 Garching

Wenn Sie Mitglied unseres akademischen Teams sind – sei es als Professor oder wissenschaftlicher Mitarbeiter – und Sie möchten, dass Ihre neuesten Errungenschaften und Erfolge hier präsentiert werden, bitten wir Sie herzlich, sich mit uns in Verbindung zu setzen (Email).

Unser NAT Wiki Blog

Aktuelle News aus der TUM

Ob aus Forschung, Studium oder Hochschulpolitik. Ob über Quantenphysik, Medizin oder Künstliche Intelligenz. Ob als Meldung, Podcast oder Magazin – bleiben Sie stets auf dem Laufenden über das Neueste von der Technischen Universität München.

Unsere Veranstaltungen

Ort
MIBE E.126
Kommentar

open for BEMP students, further information: https://www.bioengineering.tum.de/events

Ort
CPA EG.006A
Im Rahmen von
CPA-Seminar
Kommentar

CPA Special Talk by Prof. Neha Jain, Indian Institute of Technology (IIT): Deciphering the Modulation of α-Synuclein Amyloid Assembly by β2-Microglobulin Conformers

Ort
PH HS1
Im Rahmen von
Ringvorlesung "Einführung in aktuelle Aspekte wissenschaftlicher Forschung"
Ort
MIBE E.126
Im Rahmen von
Seminar des Atomistic Modeling Center
Kommentar

Prof. Carolin Müller (Friedrich-Alexander-Universität Erlangen-Nürnberg)

  • Zusatzinformationen
  • Datenschutz
  • Impressum
  • Barrierefreiheit