Zum Inhalt springen
  • Notfall
  • NAT-Wiki
  • TUMonline
  • Moodle
  • Webmail
  • Webdisk
  • e-Journals
  • App Server
  • CIP Pool
  • de
  • en
  • TUM School of Natural Sciences
  • Technische Universität München
Technische Universität München
  • Startseite
  • Aktuelles
    • Bioscience
    • Chemie
    • Physik
    • Auszeichnungen
    • ERC Grants
    • Rankings
    • TUM in Zahlen
    • Veranstaltungen
      • Tag der offenen Tür
        • 2024
      • Day of Diversity in Physics
      • Tag der Physik
        • Tag der Physik 2024
        • Tag der Physik 2023
      • Absolventinnen und Absolventenfeier der Chemie
        • Archiv
          • 2024
          • 2023
      • Absolventinnen- und Absolventenfeier Physik
        • Vorangegangene Abschlussfeiern Physik
          • Abschlussfeier Physik 2023 (Juni)
          • Abschlussfeier Physik 2023 (November)
          • Abschlussfeier Physik 2024 (Juni)
          • Absolventinnen- und Absolventenfeier Physik 2024 (November)
          • Absolventinnen- und Absolventenfeier Physik 2025 (Februar)
      • Physik-Kolloquium
  • Professuren
  • Unsere School
    • Kontakt und Anfahrt
      • Was tun im Notfall?
    • Organisation
      • Fakultätsvorstand
      • School Council
      • Organigramm
    • School Administration
    • Professuren
      • TUM Junior Fellows
    • Graduiertenzentrum
    • Talent Management und Diversity
      • Kinderbetreuung
      • Familie
      • Ukraine
    • IT-Office
      • IT-Service 5100
      • IT-Service 5400
        • Mitarbeiter
        • Support
        • CIP Pool
        • Info
        • TUMcard
    • Zentrale Dienste
      • Elektronik 5100
      • Elektronik 5400
        • Mitarbeiter
        • Service
        • Auftragsabwicklung
        • Projekte
          • Heizungssteuerung
          • HV-Supply
          • Ionenfalle
          • Laser Shutter
          • LabVIEW Praktikum
          • Piezopulser
          • Potentiostat
          • Spirograph
        • Lageplan
      • Feinmechanik 5100
      • Feinmechanik 5400
        • Mitarbeiter
        • Service
        • Auftragsabwicklung
        • Lageplan
      • Glasbläserei
      • Kühlmittel und Gase
      • Strahlenschutz und Arbeitssicherheit
      • Teilbibliotheken
        • Dokumenten-Dienst
          • Subito
      • Ver- und Entsorgung
      • Vorlesungstechnik und Sammlung Physik
      • Wissenschaftliches Rechnen
      • Zentrales Technologielabor
        • Technologielabor
        • Digitallabor
    • Öffentlichkeit
      • TUM Open Campus Day
      • studium MINT
      • Unitag an der TUM
      • Maus-Türöffner-Tag 2023
    • Historie
      • Chemie
        • Anorganische Chemie
        • Organische Chemie
        • Physikalische und Theoretische Chemie
        • Technische Chemie
      • Physik
  • Studium und Promotion
  • Forschung
    • Forschungsschwerpunkte
      • Accelerated Scientific Discovery
      • Biomolecular Engineering & Design
      • Clean Technology Solutions
      • Fundamental Forces and Cosmic Evolution
      • Fundamental Science for Health
      • Quantum Science & Technologies
    • Professional Profiles
    • Departments
    • Clusters
    • SFB und Transregios
    • TUM Forschungszentren
    • Core Facilities
    • Forschungscampus Garching
  • Intranet
  • Sitemap
  1. Startseite
  2. Aktuelles
  3. Chemie

Aktuelles aus der Chemie

Quantenmechanik hilft bei der Photosynthese

Clean Technology Solutions, CRC, e-conversion, Forschung, Chemie | 04.02.2025

Wieso Pflanzen so effizient und schnell Energie transportieren

Erstautorin Erika Keil und Prof. Jürgen Hauer im Labor. Bild: Andreas Heddergott / TUM
Untersuchung einer Probe mit pflanzlichem Chlorophyll, gewonnen aus Tiefkühlspinat. Bild: Andreas Heddergott / TUM

Der Photosynthese – wie sie vor allem Pflanzen betreiben – liegt eine besonders effiziente Energieumwandlung zugrunde. Um chemische Energie zu erzeugen, muss zunächst das Sonnenlicht aufgefangen und weitertransportiert werden. Das erfolgt praktisch verlustfrei und extrem schnell. Eine neue Studie an der Professur für Dynamische Spektroskopien der Technischen Universität München (TUM) zeigt nun, dass quantenmechanische Effekte dabei maßgeblich sind. Das fand ein Team um Erika Keil und Prof. Jürgen Hauer durch Messungen und Simulationen heraus.

Die effiziente Umwandlung von Sonnenenergie in speicherbare chemische Energieformen ist der Traum vieler Ingenieurinnen und Ingenieure. Die Natur hat für dieses Problem bereits vor Milliarden Jahren eine perfekte Lösung gefunden. Die neue Studie zeigt, dass Quantenmechanik nicht nur etwas für Physiker ist, sondern auch eine Schlüsselrolle in der Biologie spielt.

Photosynthetische Organismen wie etwa Grünpflanzen bedienen sich beim Einfangen von Sonnenlicht quantenmechanischer Vorgänge, wie Prof. Jürgen Hauer erläutert: „Wenn Licht zum Beispiel in einem Blatt absorbiert wird, ist die elektronische Anregung über mehrere Zustände verteilt; man spricht von einer sogenannten Superposition. Das ist die erste Stufe eines verlustfreien Energietransfers innerhalb der Moleküle und eines effizienten Weitertransports der Sonnenenergie. Die Quantenmechanik ist hier also zentral, um die ersten Schritte des Energie- und Ladungstransfers zu verstehen.“

Dieser mit den Mitteln der klassischen Physik nicht nachvollziehbare Vorgang findet ständig in Grünpflanzen, aber zum Beispiel auch in photosynthetischen Bakterien statt. Die genauen Mechanismen sind allerdings immer noch nicht komplett aufgeschlüsselt worden. Hauer und Erstautorin Erika Keil sehen ihre Studie als wichtige neue Grundlage für die Bestrebungen, die Funktionsweise von Chlorophyll, dem Farbstoff im Blattgrün, zu klären. Die Anwendung dieser Erkenntnisse im Design künstlicher Photosyntheseeinheiten könnte dazu beitragen, die Sonnenenergie mit bislang unerreichter Effizienz für die Stromerzeugung oder für die Photochemie zu nutzen. ​

Die Forschenden untersuchten für die Studie zwei konkrete Ausschnitte des Spektrums, in denen Chlorophyll Licht absorbiert: den energiearmen Q-Bereich (gelb-grün bis rot) und den energiereichen B-Bereich (im blauen Spektrum). Der Q-Bereich besteht dabei aus zwei verschiedenen elektronischen Zuständen, die quantenmechanisch gekoppelt sind. Diese Kopplung führt zu extrem schnellem Energietransport im Molekül. Danach beruhigt sich das System durch „Abkühlung“, indem es Energie in Form von Wärme abgibt. Die Studie zeigt, dass quantenmechanische Effekte auch biologisch relevante Prozesse entscheidend beeinflussen können.

 

Publikationen

Erika Keil, Ajeet Kumar, Lena Bäuml, Sebastian Reiter, Erling Thyrhaug, Simone Moser, Christopher D. P. Duffy, Regina de Vivie-Riedle and Jürgen Hauer: “Reassessing the role and lifetime of Qx in the energy transfer dynamics of chlorophyll a” erschienen in: Chemical Science 27.11.2024, https://doi.org/10.1039/D4SC06441K

 

Weitere Informationen und Links

  • TUM School of Natural Sciences
  • Department für Chemie
  • Exzellenzcluster e-conversion

 

Technische Universität München

Corporate Communications Center

  • Ulrich Meyer
  • presse@tum.de
  • Teamwebsite

 

Kontakte zum Artikel:

Prof. Dr. Jürgen Hauer
Technische Universität München
TUM School of Natural Sciences
Associate Professor für Dynamische Spektroskopien
Tel. +49 89 289 13420
juergen.hauer@tum.de
https://www.ch.nat.tum.de/dynspec/startseite/

 

Originalartikel: https://www.tum.de/aktuelles/alle-meldungen/pressemitteilungen/details/quantenmechanik-hilft-bei-der-photosynthese 

 


◄ Zurück zu: Chemie
To top

TUM School of Natural Sciences

Technische Universität
München

Boltzmannstr. 10
85748 Garching

  • Datenschutz
  • Impressum
  • Barrierefreiheit